New research has emerged that reveals a specific brain network – that is the last to develop and the first to show signs of neurodegeneration – is more vulnerable to unhealthy aging as well as to disorders that emerge in young people, shedding light on conditions such as Alzheimer’s disease and schizophrenia.

BrainShare on Pinterest
Grey matter in the brain – a network of nerve cells that coordinate information from different senses – develops last and degenerates first, shedding light on Alzheimer’s and schizophrenia, researchers say.

The researchers – led by Dr. Gwenaëlle Douaud at the Oxford University Functional MRI of the Brain (FMRIB) Centre in the UK – say their work sheds light on potential genetic and environmental factors that may occur early in life, causing lifelong consequences.

They publish their findings in the journal Proceedings of the National Academy of Sciences.

The team focused on grey matter in the brain – a network of nerve cells that coordinate information from different senses.

This area does not develop until late adolescence or early adulthood, they say, and it is linked with both intellectual capacity and long-term memory – mental abilities that become impaired in people with schizophrenia or Alzheimer’s disease.

A theory from the 1880s – known as the “retrogenesis” theory of brain change – proposed that brain ability declines in reverse order to how it develops in humans and in evolutionary terms (for example, humans and chimpanzees evolving from a common ancestor).

Following these lines, the researchers used a “data-driven” approach to study age-related changes. So, instead of looking for a certain pattern in brain changes in a specific brain location, the team analyzed magnetic resonance imaging (MRI) scans of 484 people – ranging in age from 8-85 years – to see what patterns were revealed.

The team explains that theirs is the first study to demonstrate the “retrogenesis” theory in grey matter on a large scale by using image analysis techniques.

Results from their imaging data showed that a particular network within the grey matter links most higher order regions of the brain. Additionally, they found that this network develops later than the rest of the brain and degenerates first in older age.

Though the finding that grey matter declines with age is not new, the team says their study showed how one specific network was more vulnerable to age-related neurodegeneration, in that it degenerated sooner than other brain areas.

What is more, the team compared this brain network in healthy individuals with those of people with Alzheimer’s and schizophrenia, and found that these brain areas likely play an important role in the two very different conditions.

Commenting on their findings, Dr. Douaud says:

”Our results show that the same specific parts of the brain not only develop more slowly, but also degenerate faster than other parts. These complex regions, which combine information coming from various senses, seem to be more vulnerable than the rest of the brain to both schizophrenia and Alzheimer’s, even though these two diseases have different origins and appear at very different, almost opposite, times of life.”

The researchers point to previous research that has shown these regions of the brain are not as developed in chimpanzees and other primates. Because these animals do not appear to experience schizophrenia or Alzheimer’s, scientists have suggested humans’ evolved brains and extended lifespans are to blame.

“These results, which might seem surprising at first, are really exciting as they actually reconcile two historical hypotheses – until now presented completely separately in the scientific literature – that the brain damage observed in Alzheimer’s and schizophrenia is related to these higher order regions of the brain,” says Dr. Douaud.

Prof. Hugh Perry – chairman of the Medical Research Council’s Neurosciences and Mental Health Board, which funded the research – notes that long ago, doctors referred to schizophrenia as “premature dementia.” Until this study, however, there has not been any evidence that the same parts of the brain could be “associated with two such different diseases.”

He says the study “raises important issues about possible genetic and environmental factors that may occur in early life and then have lifelong consequences,” and adds:

“The more we can find out about these very difficult disorders, the closer we will come to helping sufferers and their families.”

In July of this year, Medical News Today reported on a study that identified more than 80 new genes linked to schizophrenia.