Researchers claim that fevers are more than just a symptom of illness or infection. They found that elevated body temperature sets in motion a series of mechanisms that regulate our immune system.

When we are healthy, our body temperature tends to gravitate around 37°C (98.6°F).

But when faced with an infection or virus, body temperature often goes up, resulting in a fever.

When someone’s body temperature rises to about 38°C (100.4°F0, doctors classify it as a slight fever. Larger increases in body temperature to around 39.5°C (103.1°F) count as a high fever.

When a person has the flu, for instance, they may experience a mild and uncomfortable fever. This may drive many people to seek natural or over-the-counter remedies to treat it.

However, fevers are not always a bad sign. Mild fevers are a good indication that the immune system is doing its job. But fevers are not just a byproduct of the immune response.

In fact, an elevated body temperature triggers cellular mechanisms that ensure the immune system takes appropriate action against the offending virus or bacteria.

So say researchers hailing from two academic institutions in the United Kingdom: the University of Warwick in Coventry and the University of Manchester.

Senior researchers Profs. David Rand and Mike White led teams of mathematicians and biologists to understand what happens at cellular level when fever takes hold.

Their findings, which appear in PNAS, reveal that higher body temperatures drive the activity of certain proteins that, in turn, switch genes responsible for the body’s immune response on and off, as required.

Son checking father's temperatureShare on Pinterest
Maskot/Getty Images

A signaling pathway called Nuclear Factor kappa B (NF-κB) plays an important role in the body’s inflammation response in the context of infection or disease.

NF-κB are proteins that help to regulate gene expression and the production of certain immune cells.

These proteins respond to the presence of viral or bacterial molecules in the system, and that is when they start switching relevant genes related to the immune response on and off at cellular level.

Dysregulated NF-κB activity has been linked with the presence of autoimmune diseases, such as psoriasis, irritable bowel diseases, and rheumatoid arthritis.

The researchers note that NF-κB activity tends to slow down the lower the body temperature. But when the body temperature is elevated over 37°C (98.6°F), it tends to become more intense.

Why does this happen? The answer, they hypothesized, might be found by looking at a protein known as A20, encoded by the gene with the same name.

A20 is sometimes hailed as the gatekeeper of inflammatory responses, and the protein has a complex relationship with the NF-κB signaling pathway.

NF-κB switches on the gene that produces the A20 protein, but the protein, in turn, regulates NF-κB activity, so that it is appropriately slow or intensive.

The researchers involved in the study wondered whether blocking the expression of the A20 gene would affect the way in which NF-κB functioned.

And, sure enough, they found that in the absence of the A20 protein, NF-κB activity no longer reacted to changes in body temperature, and its activity therefore no longer increased in case of a fever.

These findings might also be relevant to the normal fluctuations in temperature that our bodies undergo every day, and how these may affect our response to pathogens.

As Prof. Rand explains, our body clock regulates our internal temperature and determines mild fluctuations — of about 1.15°C at a time — during wakefulness and sleep.

So, he says, “[T]he lower body temperature during sleep might provide a fascinating explanation into how shift work, jet lag, or sleep disorders cause increased inflammatory disease.”

Although many genes whose expression is regulated by NF-κB were not temperature-sensitive, the researchers found that certain genes — which played a key role in the regulation of inflammation and which impacted cell communication — did, in fact, respond differently to different temperatures.

Together, the findings suggest that developing drugs to target temperature-sensitive mechanisms at cellular level could help us to alter the body’s inflammatory response when needed.

“We have known for some time that influenza and cold epidemics tend to be worse in the winter when temperatures are cooler. Also, mice living at higher temperatures suffer less from inflammation and cancer. These changes may now be explained by altered immune responses at different temperatures.”

Prof. Mike White