Neuroprotection refers to mechanisms and strategies that aim to protect the nervous system from injury and damage. This is especially important for those with certain neurological diseases.

Researchers are looking for ways to protect the body after acute events, such as a stroke or nervous system injury, and to help people with conditions that affect the nervous system, such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis (MS).

Current neuroprotectors cannot reverse existing damage, but they may protect against further nerve damage and slow down any degeneration of the central nervous system (CNS).

Scientists are currently investigating a wide range of treatments, and some are already in use today. Some approaches may help with more than one condition, as different neurological conditions often share the same features.

Different conditions that relate to the CNS can have different symptoms, but the processes by which neurons, or nerve cells, die are often similar.

Scientists currently believe that these processes include:

Oxidative stress

Headaches can stem from neurological problemsShare on Pinterest
Neurological damage underlies a range of health issues.

Certain chemical reactions in the body produce waste substances called free radicals. These electrically charged particles occur in an oxygen-rich environment. They can interact, affect other substances, and cause cell damage.

The body can remove unwanted free radicals, but if it cannot remove them all, oxidative stress can occur.

In the nervous system, oxidative stress may increase the risk of Alzheimer’s disease.

Mitochondrial dysfunction

Mitochondria are specialized structures within cells that generate energy.

Scientists have linked problems with mitochondria in neurons to depression, MS, amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, and others.


Nerve cells can die in the brain if they become overactivated.

Glutamate, a brain chemical, excites the interaction between nerve cells. It is an important step in neurotransmission, which is the process of passing of information from one nerve cell to another.

However, too much glutamate can result in cell destruction. Overstimulation of nerves by nerve impulses can result in damage or loss of function.

Excitotoxicity is a key factor in nerve damage following a stroke.

Inflammatory changes

Inflammation is an essential part of the body’s immune response. It can occur anywhere in the body when the immune system reacts to a foreign organism or infection. It can also occur after cell damage or injury as the body tries to repair itself.

When inflammation occurs in the brain or CNS, it can result in the death of neurons

It can contribute to cell death in Alzheimer’s, Parkinson’s, and infections of the brain and the CNS.

Iron accumulation

The buildup of iron in the brain may play a role in degenerative diseases such as Alzheimer’s, Parkinson’s, and ALS, possibly as part of a cycle of excitotoxicity and cell death.

Researchers are looking for substances that may help remove excess iron from the CNS. Using these substances to remove iron could potentially restore balance to the brain and CNS.

Brain proteins

In dementia, certain proteins build up in the brain.

Researchers have found high levels of a protein called tumor necrosis factor (TNF) in people with various degenerative conditions, including Alzheimer’s, Parkinson’s, and ALS, among others.

There appears to be a link between high levels of TNF, excitotoxicity, and high levels of glutamate.

Neuroprotection aims to:

  • limit nerve death after a CNS injury
  • protect the CNS from premature degeneration and other causes of nerve cell death

Neuroprotective agents counter the effects of neurodegeneration, or nerve breakdown.

Several types of substance have neuroprotective effects:

Free radical trapping agents

These convert damaged and disease-causing unstable free radical cells into molecules that are more stable and easier for the body to manage.

Antioxidants can interact with and reduce the impact of free radicals. They are present in foods, especially plant-based foods, and supplements.

Scientists do not know exactly how they work. Their mechanism of action seems to depend on both the condition they are targeting and factors unique to each individual.

Vitamin E, for example, has shown antioxidant properties in Alzheimer’s and, to a lesser degree, ALS.

However, research has also suggested that vitamin E supplementation can make brain function and dementia worse in some people.

It is important to talk to a doctor before using any herbal products, over-the-counter medications, or supplements.

Many products can interact with other medicines to produce unwanted side effects.

Anti-excitotoxic agents

Share on Pinterest
Anti-excitotoxic agents may help manage involuntary movements.

Glutamate is an excitatory neurotransmitter. It is necessary for normal nerve cell function, but too much may be harmful.

Stopping glutamate from reaching some cells by blocking glutamate receptors, for example, may prevent overstimulation and degeneration.

Amantadine, which is one treatment option for Parkinson’s, may help reduce Parkinson’s-related dyskinesia, or involuntary movements.

It seems to work by changing the interaction between glutamate and another brain chemical.

However, side effects including hallucinations, blurred vision, confusion, and swelling of the feet can occur.

Apoptosis inhibitors

Apoptosis, or programmed cell death, refers to the natural death of cells as the body ages and grows.

Scientists have suggested that anti-apoptotic agents might slow this process in neurons. Researchers are investigating these types of therapies in cancer treatment research.

Anti-inflammatory agents

These can relieve pain as well as reduce the inflammatory processes that may worsen Parkinson’s and Alzheimer’s.

One study has indicated that taking 40 milligrams of aspirin per day may decrease the risk of Alzheimer’s in people with type 2 diabetes.

Neurotrophic factors

One group of biomolecules called neurotrophic factors can promote neuron growth.

Scientists are looking into ways of delivering these protein molecules for treatment purposes.

Iron chelators

Some people with Alzheimer’s, Parkinson’s, or ALS appear to have higher-than-normal iron levels.

For this reason, some scientists believe that lowering iron levels may help with these conditions. Substances that remove extra iron from the body, or iron chelators, may help.

In one study, scientists found that iron-binding treatment improved the condition of rodents with an Alzheimer-like disease. More studies are needed to confirm these results, however.


It is unclear what role stimulants might play in the development of brain functioning problems such as dementia.

In the past, animal studies have suggested that caffeine may have neuroprotective properties.

However, a 2015 review of research on caffeine use and dementia concluded that it was neither preventative nor harmful to brain function.

Gene therapy

Share on Pinterest
Scientists are looking into gene and stem cell therapies for neurological diseases.

The blood-brain barrier prevents infections and viruses from entering the brain, but it can also stop treatments from reaching the brain. This makes it hard to deliver a treatment directly to the brain.

Gene therapy, which involves identifying and replacing a disease-causing gene, could solve this problem.

However, as with many neuroprotective agents, research has not yet confirmed that gene therapy is consistently effective.

Stem cell therapy

Research is ongoing as to how scientists might use stem cell technology to regenerate body cells, including nerve cells.

Some studies have suggested that transplanting stem cells from bone marrow might help regenerate cells that have undergone MS-related damage.

Alzheimer’s, Parkinson’s, and MS are common conditions that affect the nervous system and can reduce a person’s quality of life.

Research into neurodegenerative conditions and possible neuroprotective therapies is rapidly progressing. Scientists hope that they may lead to a cure or the development of effective treatment for a range of conditions in future.

For now, however, many of these options need more research to confirm that they are safe and effective.


How far along are these types of treatments? Are many already in use?


Currently, people use anti-inflammatory medications and supplements when inflammation is a major part of the condition, such as in MS. No neuroprotective medications have approval at this time, but there is a great deal of research into their effects.

Heidi Moawad, MD Answers represent the opinions of our medical experts. All content is strictly informational and should not be considered medical advice.

Was this helpful?