Rapid evolution of a protein produced by an immunity gene is associated with increased antiviral activity in humans, a finding that suggests evolutionary biology and virology together can accelerate the discovery of viral-defense mechanisms, according to researchers at Fred Hutchinson Cancer Research Center in Seattle, Washington.

These findings, published January 25 in the open-access journal PLoS Genetics, present a striking example by which evolutionary studies can directly lead to biomedically important discoveries in the field of infectious diseases.

The immunity gene, called ZAP, is a key player in a newly discovered branch of antiviral defenses in mammals referred to as "intrinsic immunity." Host proteins like ZAP can target intracellular stages of the viral life cycle to inhibit viral activity. The ZAP gene, first discovered in rats, thwarts a variety of divergent viruses, from retroviruses (like HIV) to alphaviruses (like Sindbis) to filoviruses (like Ebola).

Researchers believe ZAP functions by virtue of its RNA-binding abilities, which recognize specific sequences of the virus and target their viral RNA for destruction. Host-virus interactions are a classic example of genetic conflict in which both entities try to gain an evolutionary advantage over the other. This "back-and-forth" evolution is predicted to result in rapid changes of both host and viral proteins, which results in an evolutionary signature of positive selection, especially at the direct interaction interface.

"This suggests that we might be able to deduce host-virus conflicts purely by looking at rapidly evolving protein segments," said Dr. Julie Kerns, postdoctoral researcher and the lead author of the study, which was conducted in collaboration with Drs. Harmit Singh Malik and Michael Emerman, respectively from the Basic Sciences and Human Biology Divisions of the Center.

The researchers found that there has been very little sequence evolution in the RNA-binding domain, which suggests that human ZAP may be similar to the rat gene in its viral RNA-binding specificity. However, surprisingly, the rapid evolution characteristic of "intrinsic immunity" genes was concentrated in a protein domain that was not even present in the originally discovered rat gene.

The authors found that humans encode two protein versions, or isoforms, from a single ZAP gene: a shorter version similar to the original rat gene and a longer version that possesses a rapidly evolving poly (ADP-ribose) polymerase (PARP)-like domain. In virological assays, the longer human ZAP protein isoform has higher antiviral activity. Thus, positive selection correctly predicted the more potent antiviral isoform of this protein.

The authors further suggest that ZAP is locked in a conflict with alphaviruses. The discovery of a potential human gene that can restrict alphaviral infection is particularly timely as the mosquito-borne alphavirus, Chikungunya, was responsible for a large epidemic in parts of Southeast Asia in 2006 and is now threatening to invade parts of Europe. The researchers believe this finding has important implications for the understanding of intrinsic immunity against viruses, and could potentially serve as a guide in the development of antiviral therapeutics.

"We think that a particular alphaviral protein may be playing an evolutionary 'cat-and-mouse' game with the ZAP gene," Malik said. "Identifying this protein could lead to novel ways to tackle diseases caused by alphaviruses."

###

The American Foundation for AIDS Research (amfAR), the Burroughs Wellcome Fund, a Searle Scholars Award, the National Institutes of Health and a pilot grant from the Puget Sound Partners for Global Health supported this research.

Click here to view the published article online.

CITATION: Kerns JA, Emerman M, Malik HS (2008) Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet 4(1): e21. doi:10.1371/journal.pgen.0040021

CONTACT:
Kristen Woodward

Disclaimer

This press release refers to an upcoming article in PLoS Genetics. The release is provided by the article authors and/or their institutions. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Genetics

PLoS Genetics
(http://www.plosgenetics.org/) reflects the full breadth and interdisciplinary nature of genetics and genomics research by publishing outstanding original contributions in all areas of biology. All works published in PLoS Genetics are open access. Everything is immediately and freely available online throughout the world subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org/.

Source: Mary Kohut
Public Library of Science