Ticks, blood-sucking arthropods that occur across the world, can transmit viruses, bacteria, and protozoa that threaten the health of their vertebrate hosts. Dangerous diseases transmitted by ticks include Lyme disease, which attacks humans in Europe and the USA and is caused by Borrellia bacteria; babesiosis, caused by the protozoan Babesia (a relative of the malaria parasite) that infects pets, cattle, and sometimes humans; and anaplasmosis, caused by the Anaplasma bacterium, which can have serious effects on cattle. Before such diseases can be transmitted to uninfected hosts, they need to circumvent the tick's immune system and persist in the hostile environment of the tick's body.

Ondrej Hajdusek and colleagues from the Czech Republic and Spain here summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens. Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens, say the authors.

Interaction of the tick immune system with transmitted pathogens, Ondřej Hajdusek, Radek Sima, Nieves Ayllon, Marie Jalovecka, Jan Perner, Jose de la Fuente and Petr Kopacek, Front. Cell. Infect. Microbiol., 16 July 2013, doi: 10.3389/fcimb.2013.00026